CarBoNiP™ CR

METALCOATING Group

Via Tagliamento, 14 – 20098 S. Giuliano Milanese (MI) - Italy Phone number: 02/98490672 – Fax 02/98240752

E-mail : <u>metalcoating@metalcoating.com</u>

Introduction: substitute of Hard Chrome (VI)

CarBoNiP[™] CR

□ Lead and fluorine free

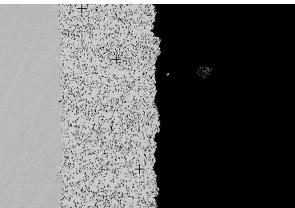
- Not continuous disposal environmentally friendly
- Wear rate 10 times lower with respect to Chrome (VI)

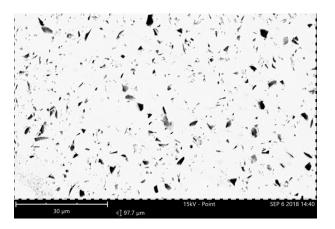
Hard Chrome (VI & III)

- □ Presence of lead and fluorine
- Disposal due to contaminantsharmful to the environment
- Higher wear rate of Cr VI with respect to CarBoNiP (10 times)

Introduction

It's an electrolytic Nickel-Phosphorous alloy (Ni-P) in which boron carbide nanoparticles (B₄C) are homogeneously dispersed.


Great Corrosion Resistance

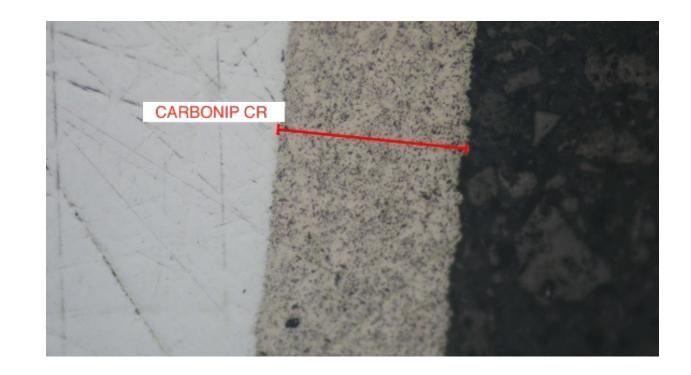


Excellent Wear Resistance

High Hardness and Deposition Rate

Introduction

It's an electrolytic Nickel-Phosphorous alloy (Ni-P) in which boron carbide nanoparticles (B_4C) are homogeneously dispersed.


Great Corrosion Resistance

Excellent Wear Resistance

High Hardness and Deposition Rate

Applications

CarBoNiP[™] CR has been formulated in order to provide:

- Good stability
 Easy handling
- Low environmental risks
- ✓ It is possible to use only the matrix (Ni-P) without the presence of B₄C as a substitute of the electroless nickel.

Applications

CarBoNiP[™] CR finds its application within several industrial sectors:

٥,

- Automotive
- Aeronautics
- Mould for plastics and others
 - Mining industry
 - Petrochemical

- 🕹 Shipbuilding industry
- Light, heavy and precision engineering
 - Textile
 - 🗞 Chain
 - Chemical industry

- Oleodynamic
- 🗴 Pneumatic
- Medical
- Electronic
- Arms industry

Applications

Il CarBoNiP[™] CR is suitable to a wide selection of substrates:

Carbon steel
Copper and its alloys
Alluminium
Cast iron



Suitability

The CarBonip[™] process si compatible with components of any size and shape:

The porosity of the coating is fundamental when Teflon™ is applied.
About 3 µm remain embedded inside the coating.
This combination leads to:

Dramatic enhancement of the corrosion resistance
 Great reduction of the friction coefficient

CarBoNiP

For external deposition the rotation of the components is mandatory to obtain a uniform coating.

□ Bigger sample production:

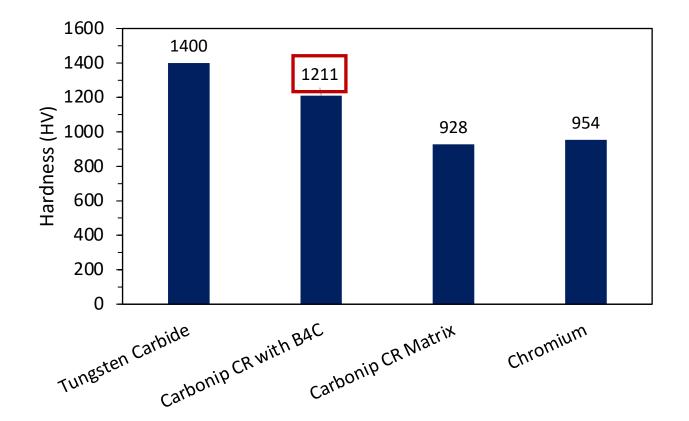
- Maximum diameter = 500 mm
- Maximum lenght = 3800 mm

CarBoNiP

The CarBonip[™] process is compatible with components of any size and shape:

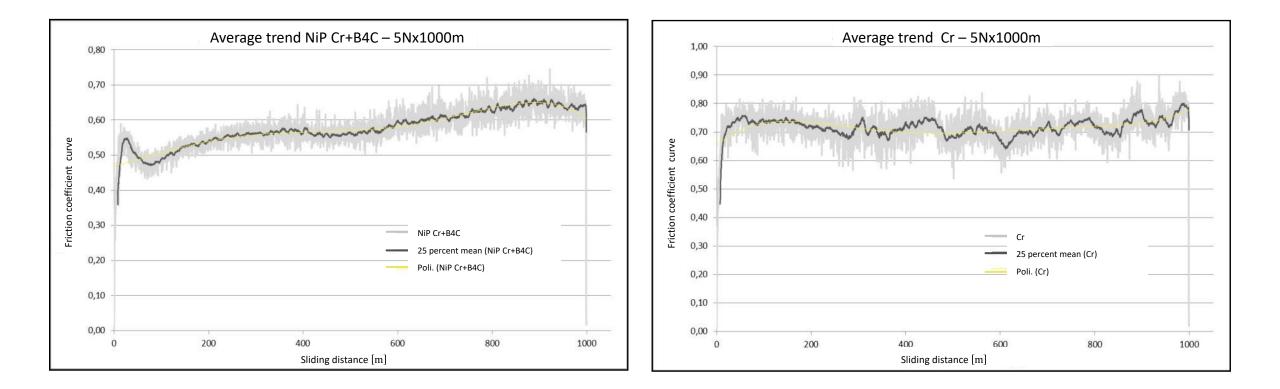
CarBoNiP[™] coating

CarBoNiP[™] coating polished through grinding



Properties and parameters	Values		
Coating thickness	30 µm		
Coating Microhardness	600 HV (mean value)		
Post thermal treatment Microhardness	1211 HV (mean value)		
Wear resistance	10 times higher than chrome VI		
Phosphorus content	18%		
B ₄ C	32.5% vol		
Stress	Negligible		

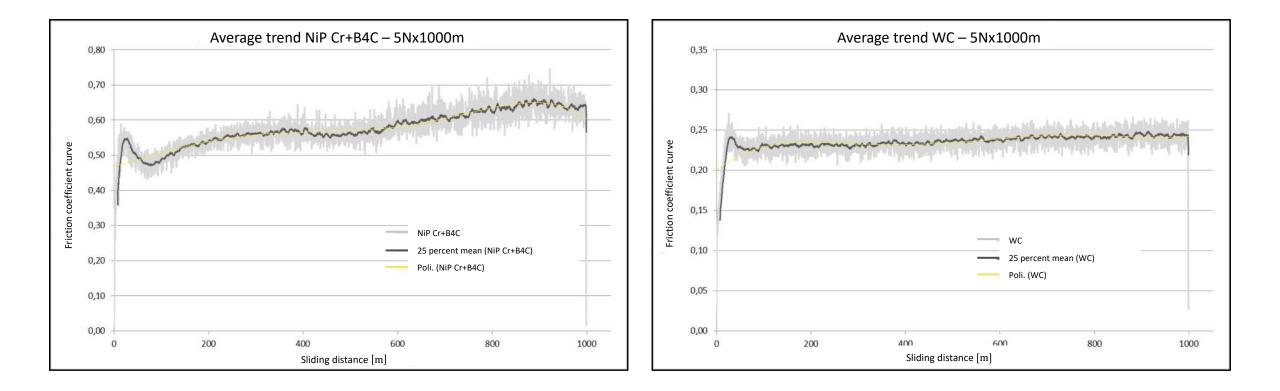
Microhardness test



□ All the samples have been tested after thermal treatment

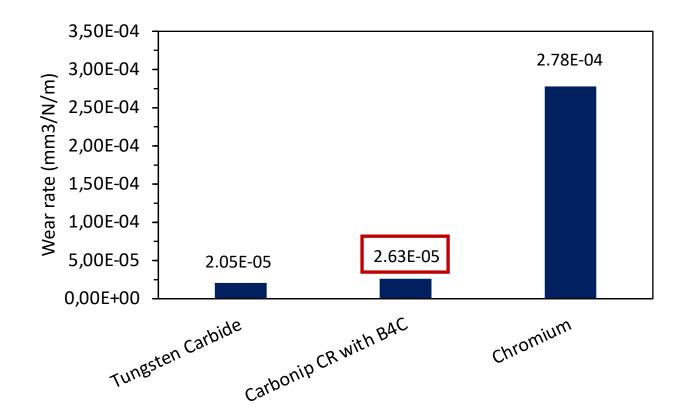
□Load applied: 25 grams

Pin on disk test: friction coefficient



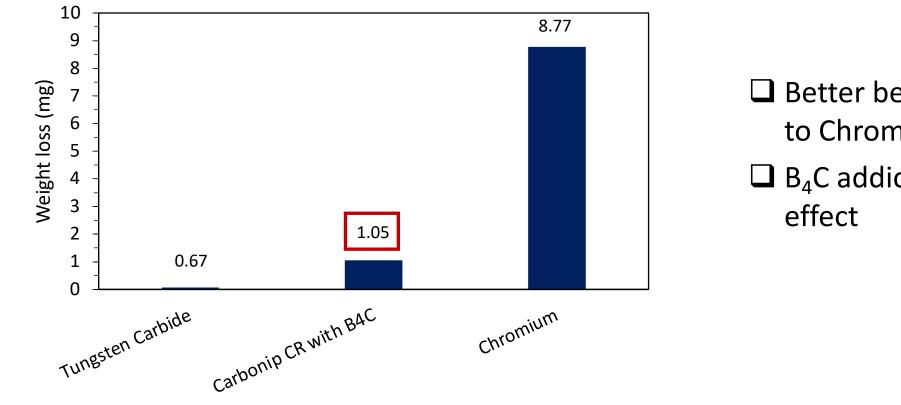
Coating roughness for each specimen $pprox 0.8 \ \mu m$

Pin on disk test: friction coefficient



Coating roughness for each specimen $\approx 0.8 \ \mu m$

Pin on disk test: wear rate



Better behaviour than Chrome in presence of B₄C (10 g/l)
 The wear rate can be controlled changing the concentration of the B₄C nanoparcicles inside the solution from 1 g/l to 10 g/l

Pin on disk test: Weight loss

Better behaviour with respect to Chrome

B₄C addiction has a positive effect

	Chrome	Tungusten Carbide	CarBoNiP™	CarBoNiP™ matrix
Hardness	Good	Excellent	Excellent	Good
Corrosion resistance	Good	Low	Excellent	Excellent
Environmental impact	Awful	Excellent	Excellent	Excellent
Wear resistance	Good	Excellent	Excellent	/

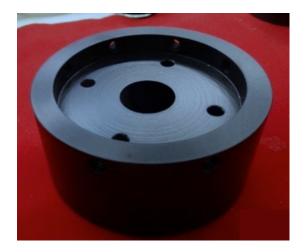
Comparative Table

Legend: Cr (VI) Cr (III) CarBoNiP Positive 8% (change with the Current efficiency 44% 12% electrolyte) Negative 80°C 50°C 20-45°C Temperature Disposal No Yes Yes Contaminants sensibility High Low High 2.0 0 0-4.0 pН 10-20 µm/h Deposition rate 20-25 µm/h 10-12 μm/h Platinized titanium Platinized titanium Anode used Tin-Lead / Graphite Presence of sludge No Yes No Thermal Treatment Yes No No

Comparative Table

Legend: Cr (VI) Cr (III) CarBoNiP™ Positive Handling Easy Complex Easy Negative 1000-1211 HV 900-1050 HV 900-1050 HV **MicroHardness** Ventilation Yes Yes Yes **Current density** 2-5 A/dm² 20-30 A/dm² 20-80 A/dm² Hydrogen embedding Low High High **Corrosion resistance** 400 h 90 h < Cr (VI) 15 μm deposition time 45-36 min 90-75 min 90-45 min Aestetic aspect stability Good Good Non-constant

Appendix: hydraulic cylinders



1- raw material

- 2- CarBoNiP[™] coating (B₄C 10 g/l)
- 3- CarBoNiP[™] coating (B₄C 5 g/l)
- 4- Polished CarBoNiP[™] coating through taping machine
- 5- Polished CarBoNiP[™] coating through diamond tool
- 6- CarBoNiP[™] coating + Teflon[™]
- 7- CarBoNiP[™] coating + Teflon[™] after abrasive cloth contribution

Appendix

Extrusion layer bubble film components : CarBoNiP™ coating + Teflon™

Appendix

Plastic materials reiforced mould: CarBoNiP[™] coating + Teflon[™]

Extrution screw: CarBoNiP™ coating + Teflon™

